Cryptanalysis of AES-128 and AES-256 block ciphers using lorenz information measure
نویسندگان
چکیده
Encryption algorithms will transform a human interpretable text block or information in to a non-interpretable block of symbols. The objective of any such encryption algorithm will be making the cipher block more non-interpretable and seemingly random block of symbols. So any cipher block will always be random and will purely be a set of random permutations of symbols. The efforts of distinguishing the cipher text of a cipher from random permutation and distinguishing a cipher blocks of different algorithms are called as “distinguisher attacks”. Generally, almost all the classical ciphers are distinguishable and even breakable. But the modern ciphers have been designed to withstand against several kinds of attacks and even withstand against distinguisher attack. It means, we cannot even guess the type of cipher used for encryption only by seeing/analyzing the encrypted block of symbols. In this work our focus will be only on distinguisher attack on modern ciphers. For that, we have attempted to distinguish the cipher blocks of AES-128 and AES-256 using a metric called Lorenz Information Measure (LIM) which is commonly used in image and signal classification systems. In our findings, we showed that the cipher blocks of AES-128 and AES-256 are certainly distinguishable from one another.
منابع مشابه
The (related-key) impossible boomerang attack and its application to the AES block cipher
The Advanced Encryption Standard (AES) is a 128-bit block cipher with a user key of 128, 192 or 256 bits, released by NIST in 2001 as the next-generation data encryption standard for use in the USA. It was adopted as an ISO international standard in 2005. Impossible differential cryptanalysis and the boomerang attack are powerful variants of differential cryptanalysis for analysing the security...
متن کاملA Splice-and-Cut Cryptanalysis of the AES
Since Rijndael was chosen as the Advanced Encryption Standard, improving upon 7-round attacks on the 128-bit key variant or upon 8-round attacks on the 256-bit key variant has been one of the most difficult challenges in the cryptanalysis of block ciphers for more than a decade. In this paper we present a novel technique of block cipher cryptanalysis with bicliques, which leads to the following...
متن کاملBiclique Cryptanalysis of Full Round AES with Reduced Data Complexity
Abstract. Biclique cryptanalysis was proposed by Bogdanov et al. in Asiacrypt 2011 as a new tool for cryptanalysis of block ciphers. A major hurdle in carrying out biclique cryptanalysis is that it has a very high query complexity (of the order of 2 for AES-128, 2 for AES-192 and 2 for AES-256). This naturally puts a big question mark over the practical feasibility of implementing biclique atta...
متن کاملBiclique Cryptanalysis of the Full AES
Since Rijndael was chosen as the Advanced Encryption Standard (AES), improving upon 7-round attacks on the 128-bit key variant (out of 10 rounds) or upon 8-round attacks on the 192/256-bit key variants (out of 12/14 rounds) has been one of the most difficult challenges in the cryptanalysis of block ciphers for more than a decade. In this paper, we present the novel technique of block cipher cry...
متن کاملCamellia: A 128-Bit Block Cipher Suitable for Multiple Platforms
We present a new 128-bit block cipher called Camellia. Camellia supports 128-bit block size and 128-, 192-, and 256-bit keys, i.e. the same interface specifications as the Advanced Encryption Standard (AES). Efficiency on both software and hardware platforms is a remarkable characteristic of Camellia in addition to its high level of security. It is confirmed that Camellia provides strong securi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 13 شماره
صفحات -
تاریخ انتشار 2016